A Gradient-like nonautonomous Evolution Process

نویسندگان

  • Tomás Caraballo
  • José A. Langa
  • Felipe Rivero
  • Alexandre N. Carvalho
چکیده

Tomás Caraballo* Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla Spain E-mail: [email protected] Alexandre N. Carvalho† Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil. E-mail: [email protected] José A. Langa‡ Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla Spain. E-mail: [email protected] Felipe Rivero§ Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla Spain. E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

We introduce the concept of bi-square-mean almost automorphic functions and Stepanov-like square-mean pseudo almost automorphic functions for stochastic processes. Using the results, we also study the existence and uniqueness theorems for Stepanov-like square-mean pseudo almost automorphic mild solutions to a class of nonautonomous stochastic functional evolution equations in a real separable H...

متن کامل

State Space Decomposition for Nonautonomous Dynamical Systems

Decomposition of state spaces into dynamically different components is helpful for the understanding of dynamical behaviors of complex systems. A Conley type decomposition theorem is proved for nonautonomous dynamical systems defined on a non-compact but separable state space. Namely, the state space can be decomposed into a chain recurrent part and a gradient-like part. This result applies to ...

متن کامل

Existence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems

By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

Evolution Semigroups for Nonautonomous Cauchy Problems

In this paper, we characterize wellposedness of nonautonomous, linear Cauchy problems (NCP ) { u̇(t) = A(t)u(t) u(s) = x ∈ X on a Banach space X by the existence of certain evolution semigroups. Then, we use these generation results for evolution semigroups to derive wellposedness for nonautonomous Cauchy problems under some “concrete” conditions. As a typical example, we discuss the so called “...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010